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Construct a Consumer Products Database Using Data from Online 

Sources 

Scrape Product Information from Online Retailers 

Verify that Scraping is Allowed 

After confirming that data collection was consistent with the retailer’s terms of use and that 
robotic scraping was not prohibited, consumer product data were collected from Drugstore.com. 
Drugstore.com’s terms of use state: 

“You agree that your use of robots, spiders, crawlers, wanderers, Web agents and other 
such automated processes on the Site will be Standard for Robot Exclusion (SRE) -
compliant robots ("robots") and when connecting to the Site, prior to downloading or 
indexing any pages on the Site, such robots will immediately visit 
http://www.drugstore.com/robots.txt ("the robots.txt file"). You understand that the 
robots.txt file is the only means by which robots are authorized to access the Site. … You 
agree not to reproduce, duplicate, copy, sell, resell or exploit for any commercial 
purposes, any portion of the Site…” 

Scraping is allowed as long as robots comply with the rules in their robots.txt file and scraped 
data are not redistributed or used for commercial purposes. The robots.txt file provides a sitemap 
to help robot scrapers navigate the site, a list of disallowed branches where scrapers should not 
go, and a minimum crawl delay to avoid overwhelming the server with HTTP requests: 

Sitemap: http://www.drugstore.com/Sitemaps/0/default.xml 
User-agent: * 
Disallow: /cart.asp 
Disallow: /list.asp 
Disallow: /onorder.asp 
Disallow: /checkout/ 
Disallow: /user/ 
Disallow: /products/email_product.asp 
Disallow: /products/writereview.asp 
Disallow: /la/account/ 
Disallow: /la/order/ 
Disallow: /templates/HIPAA/info.asp 
Disallow: /affiliate/content.asp 
Disallow: /shoppingbag.asp 
Disallow: /checkout/default.asp 
Disallow: /popups/largerphoto/default.asp 
Disallow: /pricing.asp 
Disallow: /LookAheadSuggestions.aspx 
Disallow: /templates/stdplist/default.asp 
Disallow: /templates/stdcat/default.asp 
Disallow: /templates/evgrndept/default.asp 

http://www.drugstore.com
https://drugstore.custhelp.com/app/answers/detail/a_id/512
http://www.drugstore.com/robots.txt
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Disallow: /templates/events/circular.asp 
Disallow: /4213/edh  
User-agent: adidxbot 
Crawl-Delay: 1 

Robotic Scraper 

The robotic scraper used for this project consists of approximately 130 lines of Java code. It uses 
the XPath extensions to traverse a retailer’s published sitemap, and the Apache HttpClient 
(version 3.1) to request product webpages. Note that HttpClient is no longer supported. Its 
functionality has been incorporated into Apache HttpComponents so new development should 
use this package or some other supported HTTP client (e.g., Jsoup, BeautifulSoup, cURL). 

Drugstore.com was scraped in April 2014. Scraping was done on an HP SL390G7 server with 
two 2.66GHz Intel Xeon X5650 processors and 96GB memory. The operating system was 
Scientific Linux 6.1 (Linux 2.6.32 kernel). Scraping is network-limited rather than compute- or 
memory-limited so a powerful server with specialized hardware is not necessary. A reliable 
network connection and sufficient disk space are more important. Scraping Drugstore.com took 
approximately three days at a two-second crawl delay. Their robot exclusion protocol specified a 
one-second crawl delay but this was doubled to put less strain on their servers. 

Extract the Requisite Information from the Raw HTML 

Brand and product names, ingredient list, and product category are needed for this analysis. This 
information is available on most Drugstore.com product pages and can be extracted from the raw 
HTML retrieved by the robot scraper. This is done by finding tags that consistently mark the 
desired information across a given retail site. For example, the “TblProdForkIngredients” tag 
indicates the location of the product ingredient list in Drugstore.com product pages. 

The first occurrence of the “s.prop5” and “<title>” tags indicate the brand and product names, 
respectively, and the “home<” tag indicates the retail hierarchy for product categorization (e.g., 
home à personal care à oral care à mouthwash). These tags vary by retailer but once 
identified are consistent and reliable across a given retailer’s product pages. Frequent spot checks 
of random samples are used to refine each stage of data processing. 

Validation of brand and product names was performed by manual inspection of 100 randomly 
selected products to confirm that the necessary data was correctly extracted from the raw HTML. 
Accuracy was 100% (i.e., every brand and product name in the sample was correct). 

Category assignments were similarly validated using a random sample of 100 products. 
Accuracy was high (96%). Of the four incorrectly categorized products, one was due to an error 
in the retail hierarchy; specifically, an eyeliner product was incorrectly placed in the lip liner 
branch of the sitemap. The rest were due to ambiguities in category mapping. For example, one 
of the incorrect assignments was a topical medication in a relatively sparse branch of the retail 

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org
http://jsoup.org
http://www.crummy.com/software/BeautifulSoup/
https://curl.haxx.se
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hierarchy: medicine & health à pain & fever relief à shop by active ingredient à natural 
ingredients. The most specific level of the retail hierarchy that maps to one of our product 
categories is “pain & fever relief” so it used to make the assignment, as stated in the article. In 
our categorization scheme, “pain & fever relief” maps to oral medications because most products 
in this category are oral medications. 

A combination of Python (version 2.7.3), regular expressions, grep, and the html2text utility 
were used to process the raw HTML product pages. Extracting the brand names, product names, 
and product categories was straightforward but extracting the ingredients required more finesse 
because there is no standard format for ingredient lists. Most product labels provide a simple, 
comma-delimited list of ingredients. However, some lists contain non-ingredient text, active 
concentrations, and parenthetical information that may or may not be useful, e.g.: 

active ingredients: avobenzone – 2 % (sunscreen), 
homosalate (15%), octisalate (5%) (sunscreen), oxybenzone – 
4 % (sunscreen) inactive ingredients: alcohol denat, 
acrylates, octylacrylamide, glycerin, aloe barbadensis leaf 
extract, tocopherol (vitamin e), cocos nucifera oil 
(coconut), mineral oil, fragrance 

Simply processing this string as a comma-delimited list will result in noisy ingredient names that 
are more difficult to match to chemicals. However, patterns in such strings inform a multistep 
text processing algorithm that yields a clean list of ingredients for most product label formats. 

Step 1: Remove “active ingredients:˽” (the ˽ symbol denotes a single space) and 
replace “˽inactive ingredients:˽” with a comma. 

avobenzone – 2 % (sunscreen), homosalate (15%), octisalate 
(5%) (sunscreen), oxybenzone – 4 % (sunscreen),alcohol 
denat, acrylates, octylacrylamide, glycerin, aloe 
barbadensis leaf extract, tocopherol (vitamin e), cocos 
nucifera oil (coconut), mineral oil, fragrance 

Step 2: Parse the comma-delimited list with the following regular expression to get a preliminary 
list of ingredient strings: 

Regex = ((?:(?:[^,]+? +?\(.+?\))+(?:[^,]+)?)|(?:[^,]+)) 

avobenzone - 2 % (sunscreen) 

homosalate (15%) 

octisalate (5%) (sunscreen) 

oxybenzone - 4 % (sunscreen) 

https://pypi.python.org/pypi/html2text
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alcohol denat 

acrylates 

octylacrylamide 

glycerin 

aloe barbadensis leaf extract 

tocopherol (vitamin e) 

cocos nucifera oil (coconut) 

mineral oil 

fragrance 

Step 3: Product labels often contain extraneous text like “usp”, “denat” or “denatured”, “certified 
organic”, “contains less than”, etc. so a list of the most common non-ingredient phrases was 
compiled. Such text is removed in this step. 

Step 4: Extract active concentrations from the ingredient strings using the regular expression 
below. Note that active concentrations are specified in percentages, milligrams, or units. Active 
concentrations are not used in the present analysis but they are retained for future use. 

Regex = ([0-9\.|\,0-9]*\s?)(%|mg|units) 

avobenzone - (sunscreen) 

homosalate 

octisalate (sunscreen) 

oxybenzone - (sunscreen) 

alcohol 

acrylates 

octylacrylamide 

glycerin 

aloe barbadensis leaf extract 

tocopherol (vitamin e) 

cocos nucifera oil (coconut) 

mineral oil 

fragrance 

Step 5: Extract parenthetical text using the regular expression below. Parenthetical text often 
contains information that can help identify chemical ingredients (e.g., “vitamin e” in this 
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example) so it is retained. Any leftover trailing punctuation is also removed in this step to yield a 
final, clean list of ingredient names. 

Regex = \(([^)]+)\) 

avobenzone 

homosalate 

octisalate 

oxybenzone 

alcohol 

acrylates 

octylacrylamide 

glycerin 

aloe barbadensis leaf extract 

tocopherol 

cocos nucifera oil 

mineral oil 

fragrance 

The ingredient string processing algorithm was validated by randomly selecting 100 products for 
manual inspection. Parsed ingredient lists were compared to the raw ingredient strings to confirm 
that ingredient names and accompanying parenthetical text are correctly extracted. Of the 1587 
ingredients in this sample, 1547 (97%) were correctly extracted. Of the 40 incorrectly extracted 
ingredients, 24 were slash-delimited polymers, fatty acids, or mixtures (e.g.: styrene/acrylates 
copolymer, acrylates/c10 30 alkyl acrylate crosspolymer, cetyl peg/ppg-10/1 dimethicone, 
caprylic/capric triglyceride, pvm/ma copolymer). The ingredient string processing algorithm was 
not modified to handle these types of ingredients because they are not the focus of the present 
analysis and because it is unclear how they should be parsed. Missing commas in the ingredient 
list caused the remaining 16 incorrectly parsed ingredients. 

Remove Duplicate Products 

Duplicate products can appear in the database for several reasons. The same product can appear 
in different branches of a retail sitemap. The same product may be sold in different sizes. In 
future, as more retail sites are scraped and added to the database, product inventories may 
overlap, leading to duplicate entries. Pruning duplicates is necessary to get accurate counts of 
products and ingredients, but identifying duplicate products is not always as straightforward as 



 

8 
 

matching product names under the same brand because typographical errors and differences in 
punctuation can mask duplicates, e.g.: 

 

Unfortunately, digital text contains typographical errors just like printed text. If these two 
products have identical brands and ingredient lists, they are likely the same product scraped from 
different locations. Alternative word orders in product names can also mask duplicate products, 
e.g.: 

 

It is harder to identify these two products as duplicates because the words, word order, and 
punctuation are different. However, if they also have identical brands and ingredient lists, they 
are likely different representations of the same product. Applying a spelling checker to fix 
typographical errors, removing punctuation, and doing string matching on the product names will 
find many duplicate products but it will not find duplicates when the word order of the product 
names differ. Dice’s coefficient (Dice 1945) is a better way to compare product names in this 
case: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. =
2 𝑆𝑆! ∩ 𝑆𝑆!
𝑆𝑆! + 𝑆𝑆!

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆! 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁 

If two product names have a high Dice coefficient, they are not necessarily the same product 
because formulations change. Their ingredient lists must still be compared. Labeling regulations 
dictate that ingredients be listed in descending order of predominance so word order matters 
when comparing ingredient lists. Therefore, Levenshtein ratio (Navarro 2001) is a better way to 
measure ingredient list similarity. It is computed as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑆𝑆! + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑆𝑆! − 𝐸𝐸𝐸𝐸 𝑆𝑆!, 𝑆𝑆!

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑆𝑆! + 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑆𝑆!
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆! 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆! 

Edit distance (Navarro 2001) was computed using the edit_distance function in the Natural 
Language Toolkit. The algorithm to find duplicate products is as follows: 

http://www.nltk.org/api/nltk.metrics.html
http://www.nltk.org
http://www.nltk.org
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The algorithm was tuned and validated using a manually curated sample. A random sample is 
unlikely to contain duplicate products so ten brands with ten products each were selected and 
manually analyzed for duplicates. The sample contained 89 distinct and 11 duplicate products. 
Dice coefficient and Levenshtein ratio thresholds of 0.85 and 0.9, respectively, gave the best 
results, correctly identifying 9 out of 11 duplicates with no false positives. 

Load the Product Data into a Structured Database 

The final processed data are loaded into a structured database, in this case Oracle Database 11g 
Enterprise Edition (release 11.2.0.1, 64-bit production build). The following screenshot shows an 
example product (Biotene Oral Balance, Dry Mouth Moisturizing Gel) as it appears in the 
database: 
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Each product is assigned a unique ID that is the primary key to access any data related to the 
product. The product data for the present analysis reside in two tables: one for the product details 
(CPDB_PRODUCT) and the other for ingredients (CPDB_PRODUCT_INGREDIENT). Other 
tables hold active concentrations, parenthetical information from the ingredient lists, size and 
price information, and textual information pertaining to the product, but they are not used in the 
present analysis. Note that the retrieval date (the DATERETRIEVED field) of each product is 
stored to help track reformulations of the same product. The order of ingredients on the product 
label (the INGREDIENTRANK field) is also stored because it can indicate relative 
predominance in the formulation. Finally, multiword ingredients (hydroxyethyl cellulose and 
sodium hydroxide in the example) are split into separate records (see the TERMID field) to 
facilitate matching with the chemical dictionaries chemicals. 

Process the Chemical Dictionaries 

The PubChem dictionary (Kim et al. 2016) can be downloaded from the National Center for 
Biotechnology Information at the National Library of Medicine: 
ftp://ftp.ncbi.nlm.nih.gov/pubchem/compound/extras/cid-synonym-filtered.gz. It contains 
approximately 39 million unique Compound Identifiers (CID) and 150 million synonyms. Some 
preprocessing was required to optimize name matching. Our transformations are similar to those 
applied to other chemical dictionaries and chemistry text processing applications (Hettne et al. 
2009; McCray et al. 2001; Rogers and Aronson 2008; Schwartz and Hearst 2003). First, each 
synonym is converted to lowercase. Second, the long and abbreviated forms of a synonym (e.g., 
“acetyl hexamethyl tetralin (ahtn)”) are separated into two synonyms. Third, syntactic inversion 
is performed on synonyms that contain a comma followed by a space. For example, acetyl 
hexamethyl tetralin has a synonym “ethanone, 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-
naphthalenyl)-” that is inverted to yield an additional synonym, “1-(5,6,7,8-tetrahydro-
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3,5,5,6,8,8-hexamethyl-2-naphthalenyl)-ethanone.” Finally, each synonym is split on whitespace 
to obtain a list of terms that are loaded into the database. 

The UMLS (Humphreys and Lindberg 1993; Humphreys et al. 1998) is comprised of three 
components, the SPECIALIST lexicon, semantic network, and a metathesaurus that aligns the 
content of 170 different independently maintained controlled vocabularies: 
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html. 
The terms in these vocabularies are mapped to Concept Unique Identifiers (CUI). The UMLS 
can also be downloaded from the National Library of Medicine: 
http://www.nlm.nih.gov/research/umls. Terms in the UMLS were preprocessed using a process 
similar to Hettne et al. (2010). 

The following screenshot shows the first few PubChem synonyms of sodium hydroxide as they 
appear in the database: 

 

The UMLS tables have a similar structure except the unique identifier is a CUI instead of a CID. 
Each synonym is identified by a CID and a PHRASEID. Multiword synonyms (e.g., sodium 
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hydroxide) are split into individual terms that are given a TERMID. If sodium hydroxide appears 
in a product ingredient label, it will be mapped to CID 14798 whether it appears as sodium 
hydroxide, caustic soda, or soda lye. 

Systematic names like 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthalenyl)-ethanone 
are rare in consumer product ingredient lists. Such chemicals are much more likely to be listed 
under a trivial name (e.g., acetyl hexamethyl tetralin) or an abbreviation (e.g., AHTN). However, 
to facilitate matching of systematic names, terms containing numbers and punctuation are split 
further into subterms (SUBTERMID). 

Match Ingredient Names to PubChem and UMLS Synonyms 

Ingredient names are matched to PubChem and UMLS synonyms using exact term-by-term 
matching. One-term ingredient names (e.g., glycerin) are simply compared to one-term 
PubChem synonyms and one-term UMLS concepts, two-term ingredients (e.g., sodium 
hydroxide) are compared to two-term synonyms/concepts, etc. If a match is found the ingredient 
is mapped to the CID and/or CUI. Exact matching was used for three reasons. First, as noted 
above, systematic names are rare in product ingredient labels so complex matching schemes are 
generally unnecessary. Trivial names are easily parsed into terms that can be matched exactly. 
Second, PubChem and UMLS entries often have dozens, sometimes hundreds, of synonyms, so a 
trivial name appearing in a product ingredient list is likely to be among those synonyms. Third, 
string matching techniques that use Dice’s coefficient, edit distance, and Levenshtein ratio are 
prone to false positives and false negatives when dealing with chemical names. For example, 
“vitamin a” and “vitamin e” have a high Levenshtein ratio but are different chemicals (false 
positive), whereas “dimethyl ether” and “methoxymethane” have a low Levenshtein ratio but are 
the same chemical (false negative). A dictionary-based approach using exact term-by-term 
matching is therefore the best method to map an ingredient name to a chemical identifier. 
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